Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 4-16, 2023.
Article in English | WPRIM | ID: wpr-971606

ABSTRACT

C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.


Subject(s)
Animals , Humans , Inflammation/metabolism , Lectins, C-Type/metabolism , Mammals/metabolism , Membrane Proteins , Polysaccharides/metabolism
2.
Braz. j. med. biol. res ; 53(9): e9693, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132556

ABSTRACT

Ischemic heart disease (IHD) is one of the leading causes of death worldwide. C-type lectin domain family 3 member B (CLEC3B) is a C-type lectin superfamily member and is reported to promote tissue remodeling. The serum levels of CLEC3B are downregulated in patients with cardiovascular disease. However, the molecular mechanisms of CLEC3B in IHD is not well-characterized. Therefore, we overexpressed CLEC3B and silenced CLEC3B in H9c2 rat cardiomyocytes for the first time. We then constructed a model of IHD in vitro through culturing H9c2 cardiomyocytes in serum-free medium under oxygen-deficit conditions. Then, Cell Counting Kit-8 (CCK-8), flow cytometry, qRT-PCR, and western blot assays were performed to investigate cell viability, apoptosis, and expression levels of CLEC3B, phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt), phosphorylated Akt (p-Akt), and cleaved-caspase 3. We observed that the mRNA expression of CLEC3B was decreased in hypoxic H9c2 cardiomyocytes (P<0.05). Overexpression of CLEC3B increased cell viability (P<0.01), inhibited cell apoptosis (P<0.05), upregulated the levels of p-PI3K/PI3K and p-Akt/Akt (P<0.01 or P<0.05), and downregulated expression of cleaved-caspase 3 (P<0.001) in hypoxic H9c2 cardiomyocytes while silencing of CLEC3B caused the opposite results. Inhibition of the PI3K/Akt pathway reversed the protective effect of CLEC3B on hypoxic H9c2 cardiomyocytes. Our study demonstrated that CLEC3B alleviated the injury of hypoxic H9c2 cardiomyocytes via the PI3K/Akt pathway.


Subject(s)
Humans , Animals , Rats , Apoptosis/physiology , Lectins, C-Type/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases , Myocytes, Cardiac/physiology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL